Wednesday, October 10, 2018

Overview of Thermocouple Types and Ranges

Thermocouples have been classified by the International Society of Automation (formerly Instrument Society of America) and the American National Standards Institute (ANSI), and are available for temperatures ranging from -200 deg. to 1700 deg.C (-330 deg. to 3100 deg.F). These standard tolerance thermocouples range in tolerance from ±0.5 percent to ±2 percent of true temperature. The table below presents commonly available thermocouple types and operating ranges.
Thermocouple ranges
Commonly Available Thermocouple Types and Operating Ranges
Thermocouples must be selected to meet the conditions of the application. Thermocouple and extension wires (used to transmit the voltage from the thermocouple to the monitoring point) are generally specified and ordered by their ANSI letter designations for wire types. Positive and negative legs are identified by the letter suffixes P and N, respectively. General size and type recommendations are based on length of service, temperature, type of atmosphere (gas or liquid constituents), and desired response times. Smaller wire gauges provide faster response but do not last as long under adverse conditions. Conversely, larger gauges provide longer service life but with longer response times. Thermowells and sheaths are recommended by thermocouple manufacturers for the extension of thermocouple life. Instruments used to convert thermocouple voltage to temperature scales are coded using the same letter designations. Failure to use matching thermocouples and instruments will result in erroneous readings.

Thermocouple standardsType J thermocouples use iron for the positive leg and copper-nickel (constantin) alloys for the negative leg. They may be used unprotected where there is an oxygen-deficient atmosphere, but a thermowell is recommended for cleanliness and generally longer life. Because the iron (positive leg) wire oxidizes rapidly at temperatures over 1000 deg.F, manufacturers recommend using larger gauge wires to extend the life of the thermocouple when temperatures approach the maximum operating temperature.

Type K thermocouples use chromium-nickel alloys for the positive leg and copper alloys for the negative leg. They are reliable and relatively accurate over a wide temperature range. It is a good practice to protect Type K thermocouples with a suitable ceramic tube, especially in reducing atmospheres. In oxidizing atmospheres, such as electric arc furnaces, tube protection may not be necessary as long as other conditions are suitable; however, manufacturers still recommend protection for cleanliness and prevention of mechanical damage. Type K thermocouples generally outlast Type J, because the iron wire in a Type J thermocouple oxidizes rapidly at higher temperatures.

Type N thermocouples use nickel alloys for both the positive and negative legs to achieve operation at higher temperatures, especially where sulfur compounds are present. They provide better resistance to oxidation, leading to longer service life overall.

Type T thermocouples use copper for the positive leg and copper-nickel alloys for the negative leg. They can be used in either oxidizing or reducing atmospheres, but, again, manufacturers recommend the use of thermowells. These are good stable thermocouples for lower temperatures.

Types S, R, and B thermocouples use noble metals for the leg wires and are able to perform at higher temperatures than the common Types J and K. They are, however, easily contaminated, and reducing atmospheres are particularly detrimental to their accuracy. Manufacturers of such thermocouples recommend gas-tight ceramic tubes, secondary porcelain protective tubes, and a silicon carbide or metal outer protective tube depending on service locations.

For more information about thermocouples, contact Duro-Sense Corporation by visiting https://duro-sense.com or calling 310-533-6877.

Friday, September 28, 2018

Advantage and Disadvantages of Common Temperature Sensors

THERMOCOUPLE

thermocouple
Thermocouple
Due to their simplicity, reliability, and relatively low cost, thermocouples are widely used. They are self-powered, eliminating the need for a separate power supply to the sensor. Thermocouples are fairly durable when they are appropriately chosen for a given application. Thermocouples also can be used in high-temperature applications.

Thermocouple Advantages:
  • Self-powered
  • Simple
  • Rugged
  • Inexpensive
  • Many applications
  • Wide temperature range
  • Fast response
Thermocouple Disadvantages:
  • Nonlinear output signal
  • Low voltage
  • Reference required
  • Accuracy is function of two separate measurements
  • Least sensitive
  • Sensor cannot be recalibrated
  • Least stable

RTD

RTD
RTD
Resistance temperature detectors are attractive alternatives to thermocouples when high accuracy, stability, and linearity (i.e., how closely the calibration curve resembles a straight line) of output are desired. The superior linearity of relative resistance response to temperature allows simpler signal processing devices to be used with RTD’s than with thermocouples. Resistance Temperature Detector’s can withstand temperatures up to approximately 800 C (~1500 F).

RTD Advantages:
  • More stable at moderate temperatures
  • High levels of accuracy
  • Relatively linear output signal
RTD Disadvantages:
  • Expensive
  • Self-heating
  • Lower temperature range

THERMISTOR

Thermistor
Thermistor
Thermistors work similarly to RTD’s in that they are a resistance measuring device, but instead of using pure metal, thermistors use a very inexpensive polymer or ceramic material as the element.

Thermistor Advantages:
  • High output
  • Fast
  • Two-wire ohms measurement
Thermistor Disadvantages:
  • Nonlinear
  • Limited temperature range
  • Fragile
  • Current source required
  • Self-heating

Sunday, September 23, 2018

Monday, September 10, 2018

Thermowells

Thermowell
Thermowell (Duro-Sense)
One of the most important accessories for any temperature-sensing element is a pressure-tight sheath known as a thermowell. This may be thought of as a thermally conductive protrusion into a process vessel or pipe allowing a temperature-sensitive instrument to detect process temperature without opening a hole in the vessel or pipe. Thermowells are critically important for installations where the temperature element (RTD, thermocouple, etc.) must be replaceable without de-pressurizing the process.

Thermowells may be made out of any material that is thermally conductive, pressure-tight, and not chemically reactive with the process. Most thermowells are formed out of either metal (stainless steel or other alloy) or ceramic materials. A simple diagram showing a thermowell in use with a temperature sensor (RTD) is shown here:
Thermowell

As useful as thermowells are, they are not without their caveats. All thermowells, no matter how well they may be installed, increase the first-order time lag of the temperature sensor by virtue of their mass and specific heat value. It should be intuitively obvious that a few pounds of metal will not heat up and cool down as fast as a few ounces’ worth of RTD or thermocouple, and therefore the addition of a thermowell to the sensing element will decrease the responsiveness of any temperature- sensing element. What is not so obvious is that such time lags, if severe enough, may compromise the stability of feedback control. A control system receiving a “delayed” temperature measurement will not see the live temperature of the process in real time due to this lag.

Thermowell
RTD with Thermowell 
A potential problem with thermowells is incorrect installation of the temperature-sensing element. The element must be inserted with full contact at the bottom of the thermowell’s blind hole. If any air gap is allowed to exist between the end of the temperature element and the bottom of the thermowell’s hole, this will add a second time lag to the measurement system26. Some thermowells include a spring clip in the bottom of the blind hole to help maintain constant metal-to-metal contact between the sensing element and the thermowell wall.

Reprinted from Lessons In Industrial Instrumentation by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License.

Tuesday, August 28, 2018

Temperature Transmitters

Temperature Transmitters
Temperature Transmitters (Duro-Sense)
A temperature transmitter is generally described as a device, which on the input side is connected to some sort of temperature sensor and on the output side generates a signal that is amplified and modified in different ways. Normally the output signal is directly proportional to the measured temperature within a defined measurement range. Many additional features can be added depending on the type of transmitter being used. The features of the temperature transmitter are often described by using different terms with respect to technology, mounting method, functions, etc. The following list is a brief summary of these terms.

Analog Transmitters: These transmitters are designed on analog circuit technology. They normally offer basic functions such as temperature linearization and sensor break technology. Sometimes they are adjustable for different measuring ranges, often with a fast response time.

Digital Transmitters: This transmitter type is mainly based on a microprocessor. They are often called intelligent transmitters, because they normally offer many extra features, which are not possible to realize in analog transmitters.

In-Head Transmitters: These transmitters are designed for mounting in the connection heads of temperature sensors. All Duro-Sense in-head transmitters fit into DIN B heads or larger. Special care has to be devoted to the ruggedness because of the harsh conditions that sometimes exist.

DIN Rail Transmitters: DIN rail transmitters are designed to be snapped onto a DIN rail. Duro-Sense DIN rail transmitters fit on a 35mm rail according to DIN EN 50022.

RTD Transmitters: RTD transmitters are used only for RTD sensors. (Pt100, Pt1000, Ni100, etc.). Normally they can handle only one RTD type. Most Duro-Sense transmitters can handle more than one type of RTD and are either fix- ranged or adjustable. They all have linear output.

Thermocouple TransmitterThermocouple Transmitters: Thermocouple transmitters measure a MV signal form the thermocouple and compensates for the temperature of the cold junction. The cold junction compensation is normally made by measuring the terminal temperature. Alternatively, some transmitters can be adjusted to compensate for an external fixed cold junction temperature. Pure thermocouple transmitters are often not temperature linearized due to the complicated unlinearity of the thermocouples.

Analog Output: The output signal is a current (4-20mA). Some transmitters are available with 0-20mA or 0-10mA output. The signal is normally proportional to the measured value within a defined measurement range.

Digital Output: The measured value (temperature) is presented as a binary coded message. So called Fieldbus transmitters use this technique. The Fieldbus transmitters on the market today use different standards for the communication thus creating some problems when integrating them with other instrumentation. Examples of standard available are: PROFIBUS, Interbus, Foundation Fieldbus, LonWorks and CAN-bus.

Analog and Digital Output: The HART transmitters have an analog output with a superimposed digital signal on the same wires. Typically, the analog signal is used for normal measurements and the digital signal only for temporary measurements, because of the low communication speed. The digital signal is mainly used for configuration and status information.

Isolated Transmitters: Isolated transmitters have no leading connections between circuits that are isolated from each other. The isolation effectively eliminates the risk for circulating currents and facilitates the connection of transmitters to control systems with grounded inputs.

Non-Isolated Transmitters: These transmitters have leading connections between, for instance, input and output circuits. They should be used with care.

For more information on temperature transmitters, visit https://duro-sense.com or call 310-533-6877.

Friday, August 17, 2018

Temperature Sensors for the Toughest Applications

Duro-Sense Corporation
Click for larger view.
Duro-Sense Corporation manufactures the finest quality temperature sensors available. The company has a long history of supplying thermocouples and RTDs to the top manufacturers in aerospace, medical equipment, semiconductor processing, plastics processing, and heavy industry.  From large industrial thermocouples used in primary metal production, to miniature, discreet sensors used in military aircraft, Duro-Sense products are proven to be ultra-reliable, accurate, and of extremely high value.

All Duro-Sense customers benefit from years of tackling difficult applications. By implementing stringent quality practices and advanced manufacturing processes, Duro-Sense continues to solve the most challenging temperature sensing applications.

Duro-Sense is a one-stop, full service provider of anything related to temperature sensing. Service. Quality. On-time delivery.

Rely on the Duro-Sense difference.
www.duro-sense.com  |  310-533-6877.



Friday, August 3, 2018

Video: Comparison of Thermocouples and RTDs

The video below describes the basic differences between industrial thermocouples and RTDs.


Duro-Sense Corporation provides the thermocouples, RTDs, thermowells, and accessories to the aerospace, aviation, process control, medical, R&D, power generation, alternative energy, plastics, primary metals, high-tech and OEM industries.

https://duro-sense.com
310-533-6877