When two dissimilar metal wires are joined together at one end, a voltage is produced at the other end that is approximately proportional to temperature. That is to say, the junction of two different metals behaves like a temperature-sensitive battery. This form of electrical temperature sensor is called a thermocouple:
This phenomenon provides us with a simple way to electrically infer temperature: simply measure the voltage produced by the junction, and you can tell the temperature of that junction. And it would be that simple, if it were not for an unavoidable consequence of electric circuits: when we connect any kind of electrical instrument to the thermocouple wires, we inevitably produce another junction of dissimilar metals. The following schematic shows this fact, where the iron-copper junction J1 is necessarily complemented by a second iron-copper junction J2 of opposing polarity:
Junction J1 is a junction of iron and copper – two dissimilar metals – which will generate a voltage related to temperature. Note that junction J2, which is necessary for the simple fact that we must somehow connect our copper-wired voltmeter to the iron wire, is also a dissimilar-metal junction which will also generate a voltage related to temperature. Further note how the polarity of junction J2 stands opposed to the polarity of junction J1 (iron = positive ; copper = negative). A third junction (J3) also exists between wires, but it is of no consequence because it is a junction of two identical metals which does not generate a temperature-dependent voltage at all.
The presence of this second voltage-generating junction (J2) helps explain why the voltmeter registers 0 volts when the entire system is at room temperature: any voltage generated by the iron- copper junctions will be equal in magnitude and opposite in polarity, resulting in a net (series-total) voltage of zero. Only when the two junctions J1 and J2 are at different temperatures will the voltmeter register any voltage at all.
We may express this relationship mathematically as follows: Vmeter = VJ1 − VJ2
With the measurement (J1) and reference (J2) junction voltages opposed to each other, the voltmeter only “sees” the difference between these two voltages.
Thus, thermocouple systems are fundamentally differential temperature sensors. That is, they provide an electrical output proportional to the difference in temperature between two different points. For this reason, the wire junction we use to measure the temperature of interest is called the measurement junction while the other junction (which we cannot eliminate from the circuit) is called the reference junction (or the cold junction, because it is typically at a cooler temperature than the process measurement junction).
For more information on this subject, contact Duro-Sense, Inc. by visiting https://duro-sense.com or by calling 310-533-6877.
Reprinted from "Lessons In Industrial Instrumentation" by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License.
A blog providing information about industrial temperature measurement, specifically in the areas of temperature sensors. The posts will contain educational information about thermocouples, RTDs, and other common types of temperature sensors. The application of these sensors will focus on aerospace, aircraft, research and development, medical, chemical, plastics processing, and power generation industries. For more, visit Duro-Sense.com or call 310-533-6877.
Tuesday, June 26, 2018
Tuesday, June 19, 2018
Thermocouple Types, Materials of Composition, and Temperature Ranges
Nickel-Alloy Thermocouples
Type E:
(pos) 90% Nickel / 10% Chromium;
(neg) 55% Copper / 45% Nickel (Constantan)
32 to 1600°F, 0 to 870°C
Type J:
(pos) 100% Iron
(neg) 55% Copper / 45% Nickel (Constantan)
32 to 1400°F, 0 to 760°C
Type K:
(pos) 90% Nickel / 10% Chromium
(neg) 95% Nickel / 2% Aluminum / 2% Manganese / 1% Silicon
32 to 2300°F, 0 to 1260°C
Type M:
(pos) 82% Nickel / 18% Molybdenum
(neg) 99.2% Nickel / 0.8% Cobalt
-58 to 2570°F, -50 to 1410°C
Type N:
(pos) 84.5% Nickel / 14% Chromium / 1.5% Silicon
(neg) 95.4% Nickel / 4.5% Silicon / 0.1% Magnesium
32 to 2300°F, 0 to 1260°C
Type T:
(pos) 100% Copper
(neg) 55% Copper / 45% Nickel (Constantan)
-328 to 700°F, -200 to 370°C
Platinum/rhodium-Alloy thermocouples
Type B:
(pos) 70% Platinum / 30% Rhodium
(neg) 94% Platinum / 6% Rhodium
1600 to 3100°F, 871 to 1704°C
Type R:
(pos) 87% Platinum / 13% Rhodium
(neg) 100% Platinum
1000 to 2700°F, 538 to 1482°C
Type S:
(pos) 90% Platinum / 10% Rhodium
(neg) 100% Platinum
1000 to 2700°F, 538 to 1482°C
Tungsten/Rhenium-Alloy Thermocouples
Type C:
(pos) 95% Tungsten / 5% Rhenium
(neg) 74% Tungsten / 26% Rhenium
32 to 4200°F, 0 to 2315°C
Chromel–Gold/Iron-Alloy Thermocouples
Type P:
(pos) 55% Palladium / 31% Platinum / 14% Gold
(neg) 65% Gold / 35% Palladium
32 to 2543°F, 0 to 1395°C
Friday, June 8, 2018
Precision RTD's (Resistance Temperature Detectors)
Duro-Sense RTDs, thermowells, and accessories provide high quality solutions to the aerospace, aviation, process control, medical, R&D, power generation, alternative energy, plastics, primary metals, high-tech and OEM industries.
https://duro-sense.com
310-533-6877
https://duro-sense.com
310-533-6877
Subscribe to:
Posts (Atom)