Thermocouples and resistance temperature detectors (RTDs) are both types of temperature sensors that are used to measure the temperature of a system. While they both operate on the same basic principle of using a physical property to determine temperature, they differ in the specific way they do this and the accuracy and precision of their measurements.
A thermocouple is a type of temperature sensor that is made up of two different metals that are joined together at one end. When a temperature difference is applied to the other end of the thermocouple, a small electrical voltage is generated. This voltage is proportional to the temperature difference, and can be measured and used to determine the temperature of the system. Thermocouples are relatively simple and inexpensive, but they are not very accurate or precise and are only capable of measuring a limited range of temperatures.
On the other hand, a resistance temperature detector (RTD) is a type of temperature sensor that uses the principle of electrical resistance to measure temperature. RTDs consist of a coil of fine wire that is wrapped around a core material, typically made of a metal with a high electrical resistance such as platinum, nickel, or copper. When the temperature of the RTD changes, the electrical resistance of the wire also changes, and this change can be measured and used to determine the temperature of the system. RTDs are generally more accurate and precise than thermocouples, and can be used to measure a wider range of temperatures. However, they are also more complex and expensive than thermocouples.
In summary, the key differences between thermocouples and RTDs are the way they measure temperature, the accuracy and precision of their measurements, and the range of temperatures they can measure. Thermocouples use the voltage generated by two different metals to measure temperature, while RTDs use the change in electrical resistance of a wire to measure temperature. Thermocouples are relatively simple and inexpensive, but not very accurate or precise, while RTDs are more complex and expensive, but can provide more accurate and precise measurements over a wider range of temperatures.
For expert guidance specifying or applying thermocouples or RTD's in your application, contact: