Showing posts with label industrial automation. Show all posts
Showing posts with label industrial automation. Show all posts

Sunday, October 15, 2023

The History of Modern Industrial Thermocouples

The History of Modern Industrial Thermocouples

In temperature measurement, few tools have been as pivotal as the thermocouple. A simple yet ingenious device, the thermocouple has been central to the industrial age, contributing significantly to advancements in various sectors, from metallurgy to food processing.


Origins: The Seebeck Effect


The story of the thermocouple begins in 1821 with a German physicist, Thomas Johann Seebeck. While conducting experiments, Seebeck discovered that when two different metals are joined, and one end of the junction is heated, while at the same time, the other is kept at a cooler temperature, and a small voltage is produced. This phenomenon became known as the 'Seebeck Effect'. It laid the foundation for developing the thermocouple, where the voltage generated correlates to the temperature difference.


Early Adaptations


Throughout the 19th century, scientists and engineers began to recognize the utility of the Seebeck Effect for temperature measurements. One of the first to do so was Leopoldo Nobili in the 1820s. He created a galvanometer to measure the voltage produced by thermocouples, thus converting them into practical temperature measurement devices.


The Birth of Modern Thermocouples


As we recognize it, the modern industrial thermocouple began to take shape in the early 20th century. Industries, particularly those involved in high-temperature processes like steel manufacturing and glass blowing, require precise and reliable temperature measurements. As a result, there was a drive to standardize thermocouple materials and calibrations. By the mid-20th century, standardized thermocouples made of specific alloys, such as Type K (chromel-alumel) and Type J (iron-constantan), became widely accepted.


Refinements and Innovations


Thermocouples underwent significant improvements with the advent of the electronic age in the latter half of the 20th century. An important development was cold junction compensation, which allowed for more accurate readings.


Digital technologies also revolutionized thermocouple readings. Before this, analog instruments, like the potentiometer, were used. With the rise of digital electronics, it became easier to interface thermocouples with computers, leading to automated temperature monitoring and control in industrial applications.


Modern Applications


Today, thermocouples are ubiquitous in the industrial landscape. They are employed in myriad applications, including:


  • Power Generation: Thermocouples monitor the temperature in nuclear reactors, ensuring safe operations.
  • Aerospace: They monitor temperatures in aircraft engines and space vehicles.
  • Medical: Thermocouples ensure that medical equipment, like autoclaves, maintains the necessary temperatures.
  • Food Processing: Ensuring food is cooked or stored at the correct temperature is essential for safety and quality, and thermocouples play a pivotal role here.


Conclusion


The modern industrial thermocouple is a testament to how a simple scientific discovery can revolutionize industries. From its humble beginnings with the discovery of the Seebeck Effect to its indispensable role in modern industries, the thermocouple remains a pinnacle of temperature measurement, illustrating the harmonious blend of science, engineering, and practical application.


Duro-Sense
310-533-6877
https://duro-sense.com

Tuesday, March 14, 2023

Thermocouples and RTDs: Understanding Their Uses in Industrial Temperature Sensing

Thermocouples and RTDs

Various industrial applications widely use thermocouples and RTDs for temperature measurement. The choice of which to use depends on the application's specific requirements. Here are some industrial applications where one may be better suited than the other:

Industrial Applications where Thermocouples are better suited:

  • High-temperature measurements: Thermocouples can measure temperatures ranging from -270°C to 2700°C and are more suitable for high-temperature measurements than RTDs.
  • Quick response: Thermocouples have a faster response time than RTDs and are suitable for measuring fast-changing temperature processes.
  • Harsh environments: Thermocouples can withstand harsh environments, such as high-pressure environments, corrosive or abrasive materials, and vibration, making them more suitable for applications where the temperature probe becomes exposed to such environments.
  • Low cost: Thermocouples are relatively inexpensive compared to RTDs, making them a preferred choice in cost-sensitive applications.

Industrial Applications where RTDs are better suited:

  • High accuracy: RTDs have higher accuracy than thermocouples and are, therefore, more suitable for applications that require precise temperature measurements.
  • Stable and repeatable: RTDs are stable over time and offer repeatable measurements, making them a better choice for applications where process control is critical.
  • Wide temperature range: Although RTDs have a lower temperature range than thermocouples, they can still measure temperatures as low as -200°C, making them more suitable for low-temperature applications.
  • Longer lifespan: RTDs have a longer lifespan than thermocouples and are a better choice for applications where longevity is critical.

Examples of industrial applications for thermocouples:

  • Steel industry: For measuring temperature in furnaces and blast furnaces.
  • Petrochemical industry: For measuring temperature in pipelines, storage tanks, and reactors.
  • Power generation: For measuring temperature in turbines and boilers.
  • Glass industry: For measuring temperature in glass furnaces.

Examples of industrial applications for RTDs:

  • Pharmaceutical industry: For measuring temperature in bioreactors and other critical process equipment.
  • Food industry: For measuring temperature in food processing equipment.
  • Aerospace industry: For measuring temperature in aircraft engines and other high-precision applications.
  • Laboratory and research applications: For measuring temperature in calibration and testing equipment.

Thursday, August 18, 2022

Industrial Uses of Resistance Temperature Detectors (RTDs) Explained

Industrial Uses of Resistance Temperature Detectors (RTDs)

Introduction: What is an RTD?

RTDs are sensors that measure the temperature of a material and provide an indication of its resistance to thermal changes.

An RTD is a sensor that measures the temperature of a material and provides an indication of its resistance to thermal changes. RTDs can be manufactured as either a wire or as a thin film on silicon.

The first RTD was developed in 1887 by German inventor Hermann von Helmholtz.

RTDs are typically used in industrial applications such as power plants, refineries, paper mills, and steel mills where they monitor temperatures of process fluids, gases, or equipment surfaces.

RTDs have also been used for years in home appliances like ovens and furnaces to control the temperature inside them.

What is a Typical Industrial Use of RTDs?

RTDs are used in industrial settings to measure the temperature of liquids and gases. This is done by measuring the resistance of a metal element which changes with temperature. RTDs have many applications in industry, such as controlling the temperature of devices, monitoring equipment, and testing for leaks.

Industrial use of RTDs can be found in a wide range of industries. For example, they are used to monitor the temperature of food processing plants and oil refineries. They are also used for quality control purposes in semiconductor manufacturing plants and petrochemical factories.

Other Industrial Uses of Resistance Temperature Detectors

Industrial use of RTDs is extremely common in the manufacturing industry. They are used in industrial processes to measure and control temperature, as well as to detect hot spots and cool spots.

RTDs are also used in many engineering applications such as process control, instrumentation, and automation for a variety of purposes.

Duro-Sense Corporation
310-533-6877
https://duro-sense.com



Sunday, June 30, 2019

US Power Grids, Oil and Gas Industries, and Risk of Hacking


A report released in June, from the security firm Dragos, describes a worrisome development by a hacker group named, “Xenotime” and at least two dangerous oil and gas intrusions and ongoing reconnaissance on United States power grids.

Multiple ICS (Industrial Control Sectors) sectors now face the XENOTIME threat; this means individual verticals – such as oil and gas, manufacturing, or electric – cannot ignore threats to other ICS entities because they are not specifically targeted.


The Dragos researchers have termed this threat proliferation as the world’s most dangerous cyberthreat since an event in 2017 where Xenotime had caused a serious operational outage at a crucial site in the Middle East.

The fact that concerns cybersecurity experts the most is that this hacking attack was a malware that chose to target the facility safety processes (SIS – safety instrumentation system).

For example, when temperatures in a reactor increase to an unsafe level, an SIS will automatically start a cooling process or immediately close a valve to prevent a safety accident. The SIS safety stems are both hardware and software that combine to protect facilities from life threatening accidents.

At this point, no one is sure who is behind Xenotime. Russia has been connected to one of the critical infrastructure attacks in the Ukraine.  That attack was viewed to be the first hacker related power grid outage.

This is a “Cause for Concern” post that was published by Dragos on June 14, 2019.

“While none of the electric utility targeting events has resulted in a known, successful intrusion into victim organizations to date, the persistent attempts, and expansion in scope is cause for definite concern. XENOTIME has successfully compromised several oil and gas environments which demonstrates its ability to do so in other verticals. Specifically, XENOTIME remains one of only four threats (along with ELECTRUM, Sandworm, and the entities responsible for Stuxnet) to execute a deliberate disruptive or destructive attack.

XENOTIME is the only known entity to specifically target safety instrumented systems (SIS) for disruptive or destructive purposes. Electric utility environments are significantly different from oil and gas operations in several aspects, but electric operations still have safety and protection equipment that could be targeted with similar tradecraft. XENOTIME expressing consistent, direct interest in electric utility operations is a cause for deep concern given this adversary’s willingness to compromise process safety – and thus integrity – to fulfill its mission.

XENOTIME’s expansion to another industry vertical is emblematic of an increasingly hostile industrial threat landscape. Most observed XENOTIME activity focuses on initial information gathering and access operations necessary for follow-on ICS intrusion operations. As seen in long-running state-sponsored intrusions into US, UK, and other electric infrastructure, entities are increasingly interested in the fundamentals of ICS operations and displaying all the hallmarks associated with information and access acquisition necessary to conduct future attacks. While Dragos sees no evidence at this time indicating that XENOTIME (or any other activity group, such as ELECTRUM or ALLANITE) is capable of executing a prolonged disruptive or destructive event on electric utility operations, observed activity strongly signals adversary interest in meeting the prerequisites for doing so.”